Алгоритм интегрирования с применением L-устойчивого и явных методовАлгоритм интегрирования с применением L-устойчивого и явных методов При моделировании кинетики химических реакций, расчете электронных схем и электрических сетей и других важных приложений возникает необходимость решения задачи Коши для жестких систем обыкновенных дифференциальных уравнений. Для решения таких задач применяются L-устойчивые численные схемы. В таких методах при большой размерности системы дифференциальных уравнений основные вычислительные затраты приходятся на декомпозицию матрицы Якоби. Сокращения затрат достигают замораживанием матрицы Якоби, т. е. применением одной матрицы на нескольких шагах интегрирования. Дополнительного сокращения затрат добиваются за счет применения алгоритмов интегрирования на неоднородных схемах. В состав таких алгоритмов включаются явные и L-устойчивые методы. Эти алгоритмы сами распознают, является задача жесткой или нет. Эффективная численная схема выбирается на каждом шаге по критерию устойчивости. Здесь разработан неоднородный алгоритм интегрирования на основе L-устойчивого и явных двухстадийных методов. Построено неравенство для контроля устойчивости схемы Рунге-Кутта второго порядка точности. На основе стадий этого метода предложена численная формула первого порядка с расширенным до 8 интервалом устойчивости. На основе L-устойчивой (2, 2) -схемы и численных формул типа Рунге-Кутта первого и второго порядков точности разработан алгоритм переменной структуры, в котором эффективный метод выбирается на каждом шаге по критерию устойчивости. При расчетах по L-устойчивому методу допускается замораживание матрицы Якоби, которая может вычисляться как аналитически, так и численно. Алгоритм предназначен для решения как жестких, так и нежестких задач. Приведены результаты расчетов, подтверждающие эффективность построенного алгоритма. Итого: 90.00руб. Купить Вы можете купить электронную версию издания «Алгоритм интегрирования с применением L-устойчивого и явных методов». После оплаты (для архивов) оно будет доступно в Личном Кабинете в разделе «Электронные издания». В случае оформления подписки, издание будет доступно по мере поступления от издателя. Формат PDF/HTML. Стоимость — от 90.00 руб. |