8-495- 680-90-88
public@akc.ru
(495) 680-90-88
(495) 680-89-87
На главнуюНаписать намКарта сайта

Метод определения характеристик лесов на основе материалов дистанционного зондирования Земли, данных лесоустройства и алгоритма k-NN (на примере Лодейнопольского лесничества Ленинградской области)=The Method for Determining Forest Characteristics Based on Earth Remote Sensing Materials, Forest Management Data and the k-NN Algorithm (Case Study of Lodeynopol’skoe Forest District of Leningrad Region)

Метод определения характеристик лесов на основе материалов дистанционного зондирования Земли, данных лесоустройства и алгоритма k-NN (на примере Лодейнопольского лесничества Ленинградской области)=The Method for Determining Forest Characteristics Based on Earth Remote Sensing Materials, Forest Management Data and the k-NN Algorithm (Case Study of Lodeynopol’skoe Forest District of Leningrad Region)

Метод определения характеристик лесов на основе материалов дистанционного зондирования Земли, данных лесоустройства и алгоритма k-NN (на примере Лодейнопольского лесничества Ленинградской области)=The Method for Determining Forest Characteristics Based on Earth Remote Sensing Materials, Forest Management Data and the k-NN Algorithm (Case Study of Lodeynopol’skoe Forest District of Leningrad Region)

Российская система национальной (государственной) инвентаризации лесов, действующая с 2007 г., в методическом отношении несовершенна и служит объектом критики и дискуссий. К слабым ее сторонам следует отнести недостаточное внимание, уделяемое дистанционным методам. Возможное направление совершенствования отечественной системы инвентаризации лесов – использование автоматической классификации их характеристик на основе материалов дистанционного зондирования Земли. Одним из перспективных алгоритмов автоматической классификации является метод «ближайшего соседа», или k-NN (k-nearest neighbors) метод, успешно применяемый при проведении инвентаризации лесов в других странах. Он основан на регрессии между спектральными характеристиками пикселов с известными характеристиками лесов и остальных пикселов изображения. Вопросы практического применения этого метода в целях национальной инвентаризации лесов впервые были поставлены и изучены финскими исследователями в 90-х гг. прошлого века. На протяжении двух последних десятилетий в разных странах проведено значительное количество экспериментов в этой области. Цель данного исследования – оценка возможности приме- нения k-NN метода для определения обобщенных характеристик лесов на примере Лодейнопольского лесничества Ленинградской области. Площадь лесничества – 401 866 га, в его состав входят 16 участковых лесничеств. В целях формирования набора тренировочных участков для классификации средствами геоинформационных технологий в пределах лесничества создана регулярная сеть с шагом 1

Итого: 0.00руб.


Электронное издание «Метод определения характеристик лесов на основе материалов дистанционного зондирования Земли, данных лесоустройства и алгоритма k-NN (на примере Лодейнопольского лесничества Ленинградской области)=The Method for Determining Forest Characteristics Based on Earth Remote Sensing Materials, Forest Management Data and the k-NN Algorithm (Case Study of Lodeynopol’skoe Forest District of Leningrad Region)» (бесплатно). Скачать номера в формате PDF.
  • ПодпискаЗдоровье и образование в XXI веке. Электронный научно-образовательный вестник
  • ПодпискаВестник ИРЯиК МГУ. Филология. Культурология. Педагогика. Методика
  • ПодпискаУправление качеством в нефтегазовом комплексе
  • ПодпискаЛичность. Культура. Общество
  • ПодпискаМир безопасности
  • ПодпискаФилософия и общество
  • ПодпискаИсторическая психология и социология истории
  • ПодпискаКондратьевские волны
  • ПодпискаИнформационно-управляющие системы
  • ПодпискаНаука и жизнь
  • ПодпискаВестник детско-юношеского туризма
  • ПодпискаСтудия Антре
  • ПодпискаБудь здоров! - 100 страниц о самом главном
  • ПодпискаЭкологический вестник России
  • ПодпискаКачественная архитектура

21.08.2020Все новости

Открыта подписка на 2021 год

Внимание! Открыта подписка на 2021 год.

подробнее »

ПОДПИСКА НА ЖУРНАЛЫ И ГАЗЕТЫ ON-LINE1

Агентство подписки "АРЗИ"Агентство подписки "Книга-Сервис"

© 2005-2021 Агентство «Книга-Сервис»

107996 Москва
Протопоповский пер. 19, к.17
E-mail: public@akc.ru

Загрузка...
Загрузка...