Прогнозирование пространственного поведения лесного пожара при неопределенности и нестационарности процесса = Forecasting the Spatial Behavior of a Forest Fire at Uncertainty and Instability of the ProcessПрогнозирование пространственного поведения лесного пожара при неопределенности и нестационарности процесса = Forecasting the Spatial Behavior of a Forest Fire at Uncertainty and Instability of the Process Лесной фонд России, являясь достоянием народа и федеральной собственностью особого рода, требует устойчивого управления на национальном уровне. один из ключевых принципов управления лесами – это обеспечение охраны и защиты лесов от угроз, в первую очередь от лесных пожаров. Хотя лесные пожары являются естественным компонентом лесных экосистем и не могут быть полностью устранены, в настоящее время выявлено снижение регулирующей функции лесного пожара и рост деструктивной. Понимание взаимосвязей факторов природной среды и динамики развития лесного пожара необходимо для разработки эффективных и научно обоснованных планов обеспечения безопасности лесов. основной целью исследования является повышение эффективности формирования оперативного прогноза лесного пожара в сложных реальных условиях (при нестационарности и неопределенности). Проанализированы статистические данные о лесных пожарах в США, Канаде, России и пяти южных государствах – членах европейского союза (Португалии, Испании, Франции, Италии и Греции) и подтвержден вывод об увеличении частоты возникновения крупных лесных пожаров. Представлены наиболее широко применяемые на практике модели прогнозирования динамики лесных пожаров (Van Wagner, Rothermel, Finney, Cruz и др.) и их компьютерные реализации (Prometheus, FlamMap, FARSITE, VISUAL-SEVEIF, WILDFIRE ANALYST). Предложена интеллектуальная система, предназначенная для построения оперативного прогноза лесного пожара посредством сверточных нейронных сетей CNN. описана структура данной системы, включающая три основных подсистемы: информационную, интеллектуальную и пользовательского интерфейса. ключевой элемент интеллектуальной подсистемы – это модель распространения лесных пожаров, которая распознает данные из последовательных изображений, прогнозирует динамику развития лесного пожара и генерирует изображение с прогнозом его распространения. описана схема предлагаемой модели, включающая следующие этапы: ввод входных данных; предобработка входных данных; распознавание объектов с использованием сверточных нейронных сетей; прогнозирование динамики развития лесного пожара; вывод оперативного прогноза. Подробно представлены особенности реализации этапа «распознавание объектов с использованием сверточных нейронных сетей»: размер ядра для каждого сверточного слоя 3 |